Reaktive $E = C(p-p)\pi$ -Systeme, XXVI¹⁾

Einfache Synthese für Methylenphosphane (Phosphaalkene) des Typs HP = $C(F)NR_2$ und das Phosphaalkin P \equiv C-N(iPr)₂

Joseph Grobe*, Duc Le Van, Bettina Lüth und Marianne Hegemann

Anorganisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 8, D-4400 Münster

Eingegangen am 18. Juni 1990

Key Words: Trifluoromethylphosphane / Phosphaalkenes, fluoro- / Phosphaalkyne, amino-

Reactive $E = C(p-p)\pi$ -Systems, XXVI¹⁾. – Facile Synthesis of Phosphaalkenes of the Type HP = C(F)NR₂ and the Phosphaalkyne $P \equiv C-N(iPr)_2$

The reaction of trifluoromethylphosphane CF_3PH_2 with secondary amines in a 1:3 molar ratio leads to the novel methylenephosphanes (phosphaalkenes) $HP = C(F)NR_2$ [R = Me (1), Et (2), Pr (3), piperidine (4)] in yields between 40 and 60%. The

Phosphaalkine $P \equiv C - R$ sind wertvolle Synthesebausteine in der Heteroatom- und Komplexchemie^{2,3)}. Dies wurde in den vergangenen Jahren durch umfangreiche Untersuchungen unter Verwendung des stabilen *tert*-Butylphosphaalkins nachgewiesen. Eine neue Perspektive eröffnet das vor kurzem von Appel und Poppe⁴⁾ dargestellte aminosubstituierte Derivat $P \equiv C - N(iPr)SiMe_3$, das sich als günstige Ausgangsverbindung für die Synthese ungewöhnlicher Phosphaheterocyclen erwiesen hat⁵⁾.

Im Rahmen unserer Untersuchungen zur Chemie der Fluorheteroalkene⁶⁾ bot sich das leicht zugängliche Phosphan CF₃PH₂ für die Darstellung neuer *C*-aminosubstituierter Phosphaalkene und -alkine an. Für die Verwendung dieser Verbindung sprachen folgende Ergebnisse:

a) Bei der Eliminierung von HF aus PH-funktionellen Fluoralkylphosphanen mit Stickstoffbasen wie NH₃, NMe₃ oder RNH₂ bilden sich als primäre Zwischenstufen in der Regel die entsprechenden Phosphaalkene⁷; einige Vertreter lassen sich in reiner Form isolieren, z. B. $CF_3P = C(X)OR$ (X = F, NR₂)^{8,9}.

b) Nach Nixon, Kroto et al.¹⁰⁾ entsteht beim Überleiten von CF_3PH_2 über KOH-Plätzchen ein Gemisch aus $HP=CF_2$ und $P\equiv CF$.

c) Im Gegensatz zu der komplizierten Reaktion des Phosphans $(CF_3)_2$ PH mit Trimethylamin¹¹⁾ führt die entsprechende Umsetzung mit sekundären Aminen quantitativ zu den Phosphaalkenen $CF_3P = C(F)NR_2^{12}$.

Phosphaalkene des Typs $HP = C(F)NR_2$ aus CF_3PH_2

Zur Erzeugung der Phosphaalkene $HP = C(F)NR_2$ werden 10proz. Dichlormethanlösungen des Trifluormethylphosphans jeweils mit drei Äquivalenten sekundärem Amin (Dimethyl-, Diethyl-, Dipropylamin oder Piperidin) bei -40 °C zur Reaktion gebracht. Nach Erwärmen auf Raumtemperatur und 30min. Rühren wird das Produktgemisch fraktioniert. Der flüchtige Anteil enthält neben Dichlormethan jeweils nur zwei Komponenten: Das Phosphaalken (1-4) und eine kleine Menge CF₃H. Beide lassen sich durch fraktionierende Kondensation im Vakuum problemlos voneinander trennen. Die Bildung von 1-4 erfolgt offensichtlich nach Gl. (1); Trifluormethan ist als Ergebnis der konkurrierenden Aminolyse von CF₃PH₂ anzuschen. analogous deuterium compound $DP = C(F)NEt_2$ (5) is formed by the reaction of CF_3PD_2 with Et_2ND . However, with di(isopropyl)amine the new phosphaalkyne $P \equiv C - N(iPr)_2$ (6) is produced instead of the expected phosphaalkene.

(1)

CF3PH2	− HF	[HP:	=CF ₂] -	² 2 ^{NH} [H2	PCF2NR	$_{2}] \xrightarrow{R_{2}NH} -HF$	HP=C(F)NR ₂
							1-4
			1	2	3	4	
	Ī	R	Me	Et	Pr	Piperidin	
		E/Z	19/81	18/82	17/83	14/86	

Die Ausbeuten der reinen Verbindungen 1-4 licgen zwischen 40 und 60%. Da der Nachweis der Zwischenstufen HP=CF₂ und H₂PCF₂NR₂ selbst mit Hilfe von Tieftemperatur-NMR-Experimenten nicht gelingt, erfolgen HF-Eliminierung und Addition der Amine HNR₂ an HP=CF₂ so rasch, daß die Konzentration der Intermediate unterhalb der Nachweisgrenze bleibt.

Die Verbindungen 1–4 sind hellgelbe Flüssigkeiten; sie lassen sich bei Raumtemperatur im Vakuum ohne nennenswerte Zersetzung umkondensieren. In 30proz. Dichlormethanlösung sind sie bei -30° C wochenlang haltbar. Zusammensetzung und Konstitution sind durch analytische (C, H, N) und spektroskopische Untersuchungen (¹H-, ¹⁹F-, ¹³C-NMR, IR, MS) eindeutig gesichert. Zum Vergleich der spektroskopischen Parameter wurde zusätzlich die deuterierte Verbindung DP=C(F)NEt₂ (5) aus CF₃PD₂ und Et₂ND dargestellt.

Die Massenspektren (20 und 70 eV) der Verbindungen 1–5 zeigen generell die Molekülpeaks und als bevorzugten Fragmentierungsweg die HF-(bzw. DF-)Abspaltung unter Bildung des lons [PCNR₂]⁺. Die HP-Bindung in 1–4 wird durch die IR-Absorption bei ca. 2315 cm⁻¹ [v(PH)] und die typische ¹J(PH)-Kopplung (\approx 170 Hz) angezeigt. Die ¹³C-Resonanz des sp²-hybridisierten C-Atoms liegt erwartungsgemäß bei tiefem Feld (δ_C ca. 200) und weist ¹J(PC)-Kopplungen von 65 Hz für das *E*- und 88 Hz für das *Z*-Isomere auf. Die ³¹P-Resonanz liegt bei $\delta \approx -100$ und zeigt somit eine Hochfeldverschiebung im Vergleich zu HP=CF₂ ($\delta_P = -61.4$)¹⁰ oder HP=C(NMe₂)₂ ($\delta_P = -62.6$)¹³.

Eine Bestätigung für die korrekte Auswertung der NMR- und IR-Spektren ergibt sich aus dem Vergleich der Daten von 2 mit denen der deuterierten Verbindung 5. Die für ¹J(PD) und ³J(FD) erhaltenen Werte sind um den Faktor 6.5 (gyromagnetisches Verhältnis $\gamma_{\rm H}/\gamma_{\rm D} = 6.55$) kleiner als die Kopplungen ¹J(PH) und

³*J*(FH). Die v(PD)-Schwingung wird bei 1687 cm⁻¹ registriert und folgt somit der Teller-Redlich-Produktregel v(PH)/v(PD) $\approx \sqrt{2}$.

Wie aus den NMR-Daten hervorgeht, fallen die Phosphaalkene 1-5 als Gemische der E/Z-Isomeren an. Die Bestimmung der Konfiguration basiert auf zwei Kriterien: 1) In Analogie zu den verwandten Fluoralkenen¹⁴⁾ sollte die *trans*-³J(FH)-Kopplung größer als die *cis*-Kopplung scin. 2) Für die *trans*-Anordnung von Fluor und freiem Elektronenpaar am P-Atom sind kleinere ²J(PF)-Werte zu erwarten als für die cis-Position^{8,12)}. Diese E/Z-Zuordnung wird am Beispiel des Phosphaalkens (1) veranschaulicht (Schema 1).

Schema 1

Sie stimmt zudem mit Ergebnissen von Markovskii et al.¹⁵⁾ gut überein, nach denen die ¹J(PC)-Kopplung der Z-Struktur wesentlich größer ist als die der E-Form. Aus der Intensität der ¹H- und ¹⁹F-NMR-Signale folgt, daß die Verbindungen 1-5 bevorzugt (ca. 80%) in der Z-Konfiguration anfallen. Dies steht im Einklang mit früheren Befunden^{8,12)}, die für Aminosubstituenten im Gegensatz zu Fluor oder Alkoxyresten eine bevorzugte Anbindung in *cis*-Position zum freien Elektronenpaar am Phosphoratom nachweisen.

Die Stabilität dieser sterisch ungeschützten Phosphaalkene ist auf die Delokalisierung des freien Elektronenpaares am Stickstoff zurückzuführen¹⁶. Dies wird durch folgende spektroskopische und chemische Befunde bestätigt:

a) Das ¹⁵N-NMR-Signal des Hauptisomeren der Verbindung **2** liegt mit $\delta_N = 173.8$ nahezu an der gleichen Stelle wie das des HP=C(NMe₂)₂¹⁷, also im Bereich der ¹⁵N-Resonanz von Iminium-, Amidinium- und Guanidinium-Salzen ¹⁸. Dies spricht für eine wesentliche Beteiligung der Grenzform HP-C(F)=NEt₂ am Grundzustand des Systems.

b) Bei -60 °C treten für die NMe₂-Gruppe von 1 zwei Protonensignale auf, ein Befund, der die erwartete Rotationsbehinderung um die sp²-CN-Bindung beweist. Die Koaleszenztemperatur ($T_{\rm C} = -45$ °C) entspricht der des Phosphaalkens tBuP=C(H)NMe₂¹⁹.

c) Im Gegensatz zu $CF_3P = CF_2$ und anderen Perfluorphosphaalkenen⁶⁾ reagieren 1-5 weder mit HX-Partnern wie H₂O, Methanol oder Dialkylaminen noch mit 1,3-Dienen unter Addition. Außerdem bleibt die für Phosphaalkene typische Dimerisierung aus. Dieses Verhalten entspricht dem der verwandten Derivate $CF_3P = C(F)NR_2$ und $CF_3P = C(OR)NR_2$, bei denen die n/π -Konjugation des P = C - N-Systems durch Röntgenstrukturanalyse und PE-Spektren belegt ist ^{9,12)}.

Von besonderem Interesse war die Frage nach der Nutzungsmöglichkeit von 1-5 als Ausgangsstoffe für die Erzeugung aminosubstituierter Phosphaalkine. In der Tat zeigen die NMR-Untersuchungen der Reaktionsmischung von 1 oder 2 mit Trimethyloder Triethylamin oder Chinuclidin die Bildung der Ammoniumsalze und der entsprechenden Aminophosphaalkine an $[\delta_P(P \equiv C - NMe_2) = -124.6, \delta_P(P \equiv C - NEt_2) = -119.9]$. Allerdings gelingt ihre Isolierung wegen der geringen Ausbeute und unübersichtlicher Folgereaktionen nicht. Auch Versuche, die HF-Eliminierung durch Überleiten von $HP = C(F)NMe_2$ (1) bzw. $HP = C(F)NEt_2$ (2) über KOH-Plätzchen oder durch Reaktion mit KOH-Pulver in Tetraglyme zu optimieren, schlugen bisher fehl.

Di(isopropyl)aminophosphaethin

Bei der Umsetzung von CF_3PH_2 mit Di(isopropyl)amin gemäß Gl. (1) wird überraschenderweise nicht das Phosphaalken $HP = C(F)N(iPr)_2$, sondern in etwa 15% Ausbeute das Phosphaethin $P \equiv CN(iPr)_2$ (6) erhalten. 6 läßt sich in reiner Form als hellgelbes Öl isolieren, zersetzt sich jedoch mit oder ohne Lösungsmittel (CDCl₃, CD₂Cl₂) bei Temperaturen oberhalb -20°C langsam. Die Stabilität von 6 erlaubt allerdings die Handhabung mit Hilfe der Hochvakuumtechnik und damit detaillierte spektroskopische Untersuchungen.

Im Massenspektrum tritt der Molekülpeak M⁺ (Auftrittspotential: 7.6 \pm 0.5 eV) mit hoher Intensität (82%) auf. Die starke Absorption bei $\tilde{v} = 1642 \text{ cm}^{-1}$ im IR-Gasspektrum ist der P=C-Valenzschwingung zuzuordnen. Sie liegt zwischen den für P=C-N(iPr)SiMe₃ (1588 cm⁻¹) und für P=CF (1660 cm⁻¹) angegebenen Werten^{4,10}. Das ¹³C-NMR-Spektrum von 6 zeigt für das Alkin-C-Atom ein Dublett bei $\delta_{C} = 152.2 \text{ mit } {}^{1}J(PC) = 14.7 \text{ Hz}$ in guter Übereinstimmung mit den für das Phosphaalkin P=C-N(iPr)SiMe₃ registrierten Daten [$\delta_{C}(Alkin) = 154 \text{ ppm}$, ${}^{1}J(PC) = 18.3 \text{ Hz}$]. Die ³¹P-Resonanz ($\delta_{P} = -99.6$) ist dagegen im Vergleich zum Silylamino-Derivat um etwa 40 ppm zu tieferem Feld verschoben.

Di(isopropyl)aminophosphaalkin 6 ist nach dem kürzlich von Markovskii et al.²⁰⁾ in 7% Ausbeute erhaltenen 2,2,6,6-Tetramethylpiperidinophosphaethin der dritte Vertreter einer neuen Klassc reaktiver $PC(p-p)\pi$ -Systemc.

Wir danken der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und dem Minister für Wissenschaft und Forschung Nordrhein-Westfalen für die Förderung dieser Untersuchungen.

Experimenteller Teil

Alle Reaktionen werden mit Hilfe einer Standard-Vakuumapparatur durchgeführt. Als Reaktionsgefäße dienen Schlenk-Kolben oder Mehrarm-Ampullen mit Zerschlagventil und seitlich angesetztem NMR-Röhrchen. Die verwendeten Lösungsmittel und deuterierten Verbindungen (für NMR-Messungen) werden sorgfältig getrocknet und entgast. Trifluormethylphosphan (CF₃PH₂ oder CF₃PD₂) wird nach einem früher beschriebenen Verfahren²¹⁾ dargestellt. Et₂ND erhält man durch Umsetzung von Et₂NH mit Butyllithium und anschließende Hydrolysc mit D₂O. NMR-Spektren wurden generell bei 273 K aufgenommen; 360 MHz (¹H, Standard; TMS), 90.56 MHz (¹³C, Standard: TMS), 36.4 MHz (¹⁵N, Standard: fl. NH₃), Bruker-AM 360; 84.66 MHz (¹⁹F. Standard; CCl₃F) und 36.44 MHz (³¹P, Standard: 85% H₃PO₄), Bruker-WH 90. Massenspektren: CH5-Spektrometer der Fa. MAT-Finnigan. IR-Spektren: Spektrometer 683 der Fa. Perkin-Elmer, 10-cm-Gaszelle (KBr-Fenster).

Arbeitsvorschrift für die Darstellung der Phosphaalkene 1 bis 5 und des Phosphaalkins 6: In einer dickwandigen Glasampulle (oder einem 250-ml-Schlenkkolben) werden im Vakuum Trifluormethylphosphan, Dichlormethan und drei Äquivalente des Amins in dieser Reihenfolge einkondensiert. Ansatz: $10-20 \text{ mmol } \text{CF}_3\text{PH}_2$, jeweils 30-60 mmol Amin; Lösungsmittelmenge: 1 ml Dichlormethan pro mmol Phosphan. Die Ampulle wird unter Kühlung mit flüssigem Stickstoff abgeschmolzen (bzw. der Schlenkkolben geschlossen) und auf Raumtemperatur gebracht. Nach ca. 30min. Rühren wird das entstandene Phosphaalken durch fraktionierende Kondensation aus dem Produktgemisch entfernt und gereinigt [Bäder bei -78° C (für 1, 2 und 5), -60° C (für 3 und 4) und -196° C]. Ausb. 1: 42%, 2: 60%, 3: 54%, 4: 40%, 5: 58%.

Die Umsetzung des Trifluormethylphosphans mit Di(isopropyl)amin (Molverhältnis: 1:4) und die Aufarbeitung des Produktgemisches erfolgen analog. (Reaktionszeit: 1.5 h, Bäder zur fraktionierenden Kondensation: -45 und -196°C); Ausb. von 6: 15% bezogen auf CF₃PH₂.

1-Dimethylamino-1-fluormethylenphosphan (1): IR (Gas, Signal-Auswahl): $\tilde{v} = 2945 \text{ cm}^{-1}$, 2880 (CH), 2318 (PH), 1514, 1397 (δ CH), 1302 (PC), 1172, 1139 (CF). - ¹H-NMR (CDCl₃), E-Isomer: $\delta = 2.13 \, [\text{dd}, {}^{1}J(\text{PH}) = 167.0, {}^{3}J(\text{FH}) = 66.2 \, \text{Hz}, 1 \, \text{H}, \, \text{PH}], 2.86$ (s, 6H, CH₃); Z-Isomer: $\delta = 2.39 \,[\text{dd}, {}^{1}J(\text{PH}) = 174.9, {}^{3}J(\text{FH}) =$ 38.6 Hz, 1 H, PH], 2.78 (d, J = 1.3 Hz, 6 H, CH₃). - ¹⁹F-NMR (CD₂Cl₂), *E*-Isomer: $\delta = -43.33$ [dd, ²*J*(PF) = 188.4, ³*J*(FH) = 66.7 Hz]; Z-Isomer: $\delta = -19.60 \, [dd, {}^{2}J(PF) = 178.0, {}^{3}J(FH) =$ 38.5 Hz]. $- {}^{31}$ P-NMR (CDCl₃), *E*-Isomer: $\delta = -99.0$ [dd, ${}^{1}J(PH) = 166.0, {}^{2}J(PF) = 188.0 \text{ Hz}]; \text{ Z-Isomer: } \delta = -99.9 \text{ [dd,]}$ ${}^{1}J(PH) = 178.0, {}^{2}J(PF) = 178.0 \text{ Hz}]. - {}^{13}C-NMR (CDCl_3), E-$ Isomer: $\delta = 39.3$ (s, CH₃), 200.6 [dd, ¹J(FC) = 285.5, ¹J(PC) = 65.1 Hz, P = C]; Z-Isomer: $\delta = 37.9$ (s, CH₃), 199.6 [dd, ¹J(FC) = 337.2, ${}^{1}J(PC) = 87.7$ Hz, P=C]. – MS (20 eV): m/z (%) = 107 (100) $[M^+]$, 106 (13) $[M^+ - H]$, 92 (6) $[M^+ - CH_3]$, 87 (79) $[M^+ - HF]$ und weitere Fragmente.

C₃H₇FNP (107.1) Ber. C 33.64 H 6.59 N 13.08 Gef. C 33.50 H 6.80 N 13.28

1-Diethylamino-1-fluor-methylenphosphan (2): IR (Gas, Signal-Auswahl): $\tilde{v} = 2979 \text{ cm}^{-1}$, 2935 (CH), 2318 (PH), 1500, 1440 (δCH) , 1323 (PC), 1281, 1152 (CF). - ¹H-NMR (CDCl₃) E-Isomer: $\delta = 0.93$ (t, J = 7.1Hz, 6H, CCH₃), 2.13 [dd, ¹J(PH) = 165.1, ${}^{3}J(FH) = 68.7$ Hz, 1H, PH], 3.14 (q, J = 7.1 Hz, 4H, CH₂); Z-Isomer: $\delta = 0.91$ (t, J = 7.1 Hz, 6H, CCH₃), 2.26 [dd, ¹J(PH) = $174.5, {}^{3}J(FH) = 40.3 Hz, 1H, PH], 3.06 (q, J = 7.1 Hz, 4H,$ CH₂). - ¹⁹F-NMR (CDCl₃), *E*-Isomer: $\delta = -48.97 \text{ [dd, }^{2}J(\text{PF}) =$ 201.6, ${}^{3}J(FH) = 69.0 \text{ Hz}$; Z-Isomer: $\delta = -24.10 \text{ [dd, } {}^{2}J(PF) =$ 176.0, ${}^{3}J(FH) = 40.0 \text{ Hz}]. - {}^{31}P-NMR (CDCl_3), E-Isomer: \delta =$ $-99.9 \text{ [dd, }^{1}J(\text{PH}) = 163.8, ^{2}J(\text{PF}) = 201.5 \text{ Hz}, \text{ Z-Isomer: } \delta =$ -99.1 [dd, ${}^{1}J(PH) = 173.0$, ${}^{2}J(PF) = 176.0$ Hz]. $- {}^{13}C-NMR$ (CDCl₃), *E*-Isomer: $\delta = 11.6$ (s, CH₃), 44.6 (s, CH₂), 199.5 [dd, ${}^{1}J(FC) = 285.4, {}^{1}J(PC) = 66.4 \text{ Hz}, P = C]; \text{ Z-Isomer: } \delta = 11.3 \text{ (s,}$ CH₃), 43.5 (s, CH₂), 198.9 [dd, ${}^{1}J(FC) = 337.5$, ${}^{1}J(PC) = 89.2$ Hz, P = C]. - MS (20 eV): m/z (%) = 135 (78) [M⁺], 134 (59) [M⁺ -H], 116 (14) $[M^+ - F]$, 115 (100) $[M^+ - HF]$, 106 (18) $[M^+ - HF]$ C_2H_5] und weitere Fragmente.

C₅H₁₁FNP (135.1) Ber. C 44.45 H 8.21 N 10.37 Gef. C 44.25 H 8.40 N 10.66

1-Dipropylamino-1-fluor-methylenphosphan (3): IR (Gas, Signal-Auswahl): $\tilde{v} = 2975 \text{ cm}^{-1}$, 2886 (CH), 2316 (PH), 1497, 1437 (δ CH), 1302 (P=C), 1247, 1153 (CF). - ¹H-NMR (CDCl₃), E-Isomer: $\delta = 2.29 \, [dd, {}^{1}J(PH) = 167.0, {}^{3}J(FH) = 69.2 \, Hz, 1 \, H,$ PH], 3.19 [t, ${}^{2}J(HH) = 7.5$ Hz, 4H, NCH₂], Signale der CH₂CH₃-Gruppe sind überlagert mit denen des Z-Isomeren; Z-Isomer: $\delta =$ 0.79 (t, J = 7.3 Hz, 6H, CH₃), 1.54 (m, J = 7.2 und 7.5 Hz, 4H, CH_2CH_3 , 2.48 [dd, ¹J(PH) = 176.5, ³J(FH) = 40.1 Hz, 1H, PH], 3.13 (t, J = 7.5 Hz, 4H, NCH₂). $- {}^{19}$ F-NMR (CDCl₃), E-Isomer: $\delta = -46.49 \, [dd, {}^{2}J(PF) = 201.8, {}^{3}J(FH) = 69.0 \, Hz]; Z-Isomer;$ $\delta = -21.73 \,[dd, {}^{2}J(PF) = 177.3, {}^{3}J(FH) = 40.2 \,Hz]. - {}^{31}P-NMR$ (CDCl₁), E-Isomer: $\delta = -98.4 \, [dd, {}^{1}J(PH) = 162.0, {}^{2}J(PF) =$ 202.2 Hz]; Z-Isomer: $\delta = -97.7$ [dd, ¹J(PH) = 172.0, ²J(PF) = 176.4 Hz]. $- {}^{13}$ C-NMR (CDCl₃), *E*-Isomer: $\delta = 11.5$ (s, CH₃), 22.2 (s, CH_2CH_3), 52.4 (s, NCH_2), 200.5 [dd, ${}^{1}J(FC) = 287.3$, ${}^{1}J(PC) =$ 66.4 Hz, P=C]; Z-Isomer: $\delta = 11.0$ (s, CH₃), 19.8 (s, CH₂CH₃), 51.2 (s, NCH₂), 200.0 [dd, ${}^{1}J(FC) = 338.5$, ${}^{1}J(PC) = 88.4$ Hz, P = C]. - MS (20 eV): m/z (%) = 163 (16) [M⁺], 162 (7) [M⁺ -

H], 144 (18) $[M^+ - F]$, 143 (100) $[M^+ - HF]$ und weitere Fragmente. C₇H₁₅FNP (163.2) Ber. C 51.52 H 9.26 N 8.58 Gef. C 51.42 H 9.30 N 8.56

1-Fluor-1-piperidinomethylenphosphan (4): IR (Gas, Signal-Auswahl): $\tilde{v} = 2952 \text{ cm}^{-1}$ (CH), 2320 (PH), 1490, 1440 (δ CH), 1292 (P=C), 1243, 1105 (CF). - ¹H-NMR (CDCl₃), *E*-Isomer: $\delta = 1.47$ [s, br., 6H, CH₂], 2.53 [dd, ${}^{1}J(PH) = 164.6$, ${}^{3}J(FH) = 66.9$ Hz, 1H, PH], 3.38 [s, 4H, NCH₂]; Z-Isomer: $\delta = 1.55$ [s, br., 6H, CH₂], 2.61 [dd, ${}^{1}J(PH) = 175.5$, ${}^{3}J(FH) = 39.0$ Hz, 1 H, PH], 3.28 $[s, 4H, NCH_2]$. - ¹⁹F-NMR (CDCl₃), *E*-Isomer: $\delta = -46.61$ [dd, ${}^{2}J(PF) = 203.1, {}^{3}J(FH) = 66.5 \text{ Hz}]; \text{ Z-Isomer: } \delta = -23.09 \text{ [dd,}$ ${}^{2}J(PF) = 177.6, {}^{3}J(FH) = 38.6 \text{ Hz}]. - {}^{31}P-NMR (CDCl_3), E-Iso$ mer: $\delta = -96.4$ [dd, ²J(PF) = 203.8, ¹J(PH) = 163.8 Hz]; Z-Isomer: $\delta = -95.0 \, [\text{dd}, {}^{2}J(\text{PF}) = 176.8, {}^{1}J(\text{PH}) = 172.0 \, \text{Hz}]. -$ ¹³C-NMR (CDCl₃), *E*-Isomer: $\delta = 23.2$ (s, NCCCH₂), 24.4 (s, NCCH₂), 47.9 (s, NCH₂), 199.9 [dd, ${}^{1}J(FC) = 283.9$, ${}^{1}J(PC) = 65.5$ Hz, P = C]; Z-Isomer: $\delta = 23.1$ (s, NCCCH₂), 24.0 (s, NCCH₂), 46.6 $(d, J = 11.2 \text{ Hz}, \text{NCH}_2), 199.2 \text{ [dd, } {}^1J(\text{FC}) = 337.7, {}^1J(\text{PC}) = 86.7$ Hz, P=C]. - MS (70 eV): m/z (%) = 147 (8) [M⁺], 146 (2) $[M^+ - H]$, 128 (2) $[M^+ - F]$, 127 (20) $[M^+ - HF]$ und weitere Fragmente.

C₆H₁₁FNP (147.1) Ber. C 48.99 H 7.54 N 9.52 Gef. C 48.89 H 7.76 N 9.51

1-Diethylamino-1-fluor-methylen[D]phosphan (5): Deuterierungsgrad: 95%. – IR (Gas, Signal-Auswahl): $\tilde{v} = 2986 \text{ cm}^{-1}$, 2947 (CH), 1687 (PD), 1501, 1441 (8 CH), 1322 (P=C), 1280, 1252, 1152 (CF). $- {}^{1}$ H-NMR (CD₂Cl₂), *E*-Isomer: $\delta = 1.13$ (t, J = 7.2 Hz, 6H, CH₃), 3.35 (q, J = 7.2 Hz, 4H, CH₂); Z-Isomer: $\delta = 1.13$ (t, J = 7.2 Hz, 6H, CH₃), 3.28 (q, J = 7.2 Hz, 4H, CH₂). $- {}^{19}$ F-NMR (CD_2Cl_2) , E-lsomer: $\delta = -47.30 \, [dt, {}^2J(PF) = 200.4, {}^3J(FD) =$ 10.0 Hz]; Z-Isomer: $\delta = -22.44$ [dt, ²J(PF) = 176.0, ³J(FD): = 6.0 Hz]. $- {}^{31}$ P-NMR (CD₂Cl₂), *E*-Isomer: $\delta = -103.2$ [dt, ${}^{2}J(\mathbf{PF}) = 199.0, {}^{1}J(\mathbf{PD}) = 26.0 \text{ Hz}]; \text{ Z-Isomer: } \delta = -101.0 \text{ [dt,}$ ${}^{2}J(PF) = 176.0, {}^{1}J(PD) = 28.0 \text{ Hz}$]. - ${}^{13}C$ -NMR (CD₂Cl₂), E-Isomer: $\delta = 12.3$ (s, CH₃), 45.5 (s, CH₂), 200.5 [dd, ¹J(FC) = 284.2, ${}^{1}J(PC) = 65.0 \text{ Hz}, P = C$; Z-Isomer: $\delta = 12.1$ (s, CH₃), 44.4 (s, CH₂), 199.9 [dd, ${}^{1}J(FC) = 337.2$, ${}^{1}J(PC) = 88.0$ Hz, P = C]. - MS (20 eV): m/z (%) = 136 (46) [M⁺], 134 (21) [M⁺ - D], 117 (4) $[M^+ - F]$, 115 (100) $[M^+ - DF]$ und weitere Fragmente.

Di(isopropyl)aminophosphaethin (6): IR (Gas, Signal-Auswahl): $\tilde{v} = 2981 \text{ cm}^{-1}$, 2941, 2883 (CH), 1642 (P=C), 1374, 1365 (δCH) . - ¹H-NMR (CDCl₃): $\delta = 1.23$ [d, ³J(HH) = 6.6 Hz, 6 H, CH_3], 3.09 [sept, d, ${}^{3}J(HH) = 6.6$, ${}^{3}J(PH) = 2.1$ Hz, 1H, CH]. - ${}^{31}P{}^{H}-NMR (CDCl_3): \delta = -99.6 (s). - {}^{13}C-NMR (CD_2Cl_2): \delta =$ 20.7 (s, CH₃), 52.4 [d, ${}^{3}J(PC) = 5.1$ Hz, CH], 152.2 [d, ${}^{1}J(PC) =$ 14.7 Hz, C = P]. - MS (70 eV): m/z (%) = 143 (82) [M⁺], 128 (22) $[M^+ - CH_3]$, 101 (68) $[M^+ - C_3H_6]$, 86 (27) $[M^+ - C_4H_9]$, 59 (100) $[M^+ - C_6H_{12}]$, 43 (86) $[M^+ - NC_6H_{14}]$.

CAS-Registry-Nummern

(Z)-1: 128871-05-6 / (E)-1: 128871-11-4 / (Z)-2: 128871-06-7 / (E)-**2**: 128871-12-5 / (Z)-**3**: 128871-07-8 / (E)-**3**: 128871-13-6 / (Z)-**4**: 128871-08-9 / (E)-**4**: 128871-14-7 / (Z)-**5**: 128871-09-0 / (E)-**5**: 128871-15-8 / 6: 128871-10-3 / CF₃PH₂: 420-52-0

¹⁾ XXV. Mitteilung: J. Grobe, D. Le Van, B. Krebs, M. Dartmann,

F. G. A. Stone, J. Szameitat, J. Organomet. Chem., im Druck. ²⁾ M. Regitz, Chem. Rev. **90** (1990) 191; M. Regitz, P. Binger, Angew. Chem. 100 (1988) 1541; Angew. Chem. Int. Ed. Engl. 27 (1988) 1484; R. Appel, F. Knoll, Adv. Inorg. Chem. 33 (1989) 259; L. N. Markovskii, V. D. Romanenko, Tetrahedron 45 (1989) 6019.

- ³⁾ J. F. Nixon, Chem. Rev. 88 (1988) 1327.
- ⁴⁾ R. Appel, M. Poppe, Angew. Chem. 101 (1989) 70; Angew. Chem. Int. Ed. Engl. 28 (1989) 53.
- ⁵⁹ E. Niecke, R. Streubel, M. Nieger, D. Stalke, Angew. Chem. **101** (1989) 1708; Angew. Chem. Int. Ed. Engl. **28** (1989) 1673.
- ⁶⁾ J. Grobe, D. Le Van, Angew. Chem. 96 (1984) 716; Angew. Chem. Int. Ed. Engl. 23 (1984) 710; J. Grobe, D. Le Van, M. Hegemann, Z. Naturforsch., Teil B, 45 (1990) 148, und dort zitierte Literatur.
- ⁷⁾ H. Goldwhite, R. N. Haszeldine, D. G. Rowsell, J. Chem. Soc., Chem. Commun. 1965, 83; R. N. Haszeldine, D. R. Taylor, E. W. White, J. Fluorine Chem. 11 (1978) 441.
- ⁸⁾ J. Grobe, D. Le Van, J. Nientiedt, Z. Naturforsch., Teil B, 41 (1986) 149.
- 9) U. Althoff, Dissertation, Universität Münster, 1990.
- ¹⁰⁾ H. Eshtiagh-Hosseini, H. W. Kroto, J. F. Nixon, J. Chem. Soc., Chem. Commun. **1979**, 653.
- ¹¹ A. B. Burg, *Inorg. Chem.* 20 (1981) 3734.
 ¹² J. Grobe, D. Le Van, J. Nientiedt, B. Krebs, M. Dartmann, *Chem.* Ber. 121 (1988) 655.
- ¹³⁾ K. Issleib, E. Leissring, M. Riemer, H. Oehme, Z. Chem. 23 (1983) 99.

- ¹⁴⁾ J. W. Emsley, L. Phillips, V. Wray, Prog. Nucl. Magn. Reson. Spectrosc. 10 (1976) 83. ¹⁵⁾ V. D. Romanenko, A. V. Ruban, A. N. Chernega, M. I. Povo-
- lotskii, M. Yu. Antipin, Yu. T. Struchkov, L. N. Markovskii, J. Gen. Chem. USSR (Engl. Transl.) 59 (1989) 1528. ¹⁶⁾ T. A. Knaap, Th. C. Kleebach, F. Visser, F. Bickelhaupt, P. Ros,
- E. J. Baerends, C. H. Stam, M. Konijn, Tetrahedron 40 (1984) 765.
- ¹⁷⁾ A. Schmidpeter, B. Wrackmeyer, Z. Naturforsch., Teil B, 41 (1986) 553
- ¹⁸⁾ G. T. Martin, M. L. Martin, J. P. Gouesnard, ¹⁵N-NMR Spectroscopy, S. 151, Springer-Verlag, Berlin, Heidelberg, New York 1981.
- ¹⁹⁾ G. Becker, W. Uhl, H. J. Wessely, Z. Anorg. Allg. Chem. 479 (1981) 41.
- ²⁰⁾ L. N. Markovskii, G. N. Koidan, A. P. Marchenko, V. D. Romanenko, M. I. Povolotskii, A. M. Pinchuk, Zh. Obshch. Khim 59 (1989) 2133.
- ²¹⁾ J. Grobe, D. Le Van, R. Demuth, J. Fluorine Chem. 39 (1988) 385.

[210/90]